

Translating US CO₂-EOR learnings from onshore to offshore

Susan Hovorka Gulf Coast Carbon Center Bureau of Economic Geology Jackson School of Geosciences

Second International Offshore Storage Workshop

TEXAS Geosciences

The University of Texas at Austin Jackson School of Geosciences

Talk Outline

- CO₂ Enhanced oil recovery (CO₂-EOR) onshore is mature, safe, and economically viable
- What is needed to translate this to offshore?
- Monitoring storage and accounting as part of CCUS onshore – translation to offshore
- Lifecycle value of EOR as storage

Total United States Enhanced Oil Recovery Production, 1986 - 2010 (Thousand Barrels Per Day)

What makes CO2- EOR succeed Screening Tree

What makes CO₂- EOR succeed (the hidden issues that may be barriers to offshore)

- Business model investment for a delayed but sure payout
- Competition with other similar capitalintensive projects
- Non contamination of methane resources

Business model – investment for a delayed but sure payout

- Risk averse deployment (similar to last project)
- Fast deployment once investment decision is made
 - Fast permitting
 - Fast preparation of field and infrastructure
 - Fast processing of reservoir
- Required investment

Fast processing of reservoir

 Comparing onshore and offshore well spacing- link to rate of reservoir processing

Typical 5-spot pattern

400 m 6- 15 months CO_2 + oil to producers

Well emplaced from a platform commonly use long laterals

Competition with other similar capital-intensive projects

- Competition with other types of EOR
 - Methane reinjection
 - Cantarrell N₂ flood
- Other types of investments
- Note that this competition can be mitigated via financial market structure
 - US CO₂ EOR incentives for tertiary recovery

Overview of CO₂ Recycle

Recycle

- Onshore field has space for CO₂-oil- water separation and CO₂ recompression.
- Space and weight on platform is much more limited than onshore

Or Aker Solutions, seafloor facility

Core Energy facility, Michigan

Snøvit solution- applied to CO₂ EOR?

Double pipeline, processing done onshore

Competition with Methane Resources

- Methane abundant in offshore reservoirs
- Methane stranded offshore recycled into reservoir for pressure support
- Value of methane avoid damage by contamination by CO₂
- Methane damages miscibility

Case study fields: Offshore Gulf of Mexico

Decreasing miscibility in oil sands

Offshore GoM oil sands

GULF COAST CARBON CENTER

OF GEOSCIENCE

Examples of Integrated CCS Projects

Capture from Storage type	Power production	Industry	Gas Separation
For disposal	SECARB- Plant	ADM Ethanol, IL	Sleipner – North Sea Snøvit – Barents
	Berry Alabama	Tomakomai- Hokkaido Japan	
	AEP Mountaineer, West Virginia		Sea
		Shell QUEST,	Otway Australia
	Aquistore, Sask.	Alberta	
For EOR	Boundary Dam, Saskatchewan Kemper - Alabama NRG/PetraNova-	Air Products- Port Arthur TX	Many fields in Permian Basin sourced from Val
		Yanchang	Verde Basin gas, TX
Offshore storage		Ordos, China Coffeeville and	Bell Creek, Lost Cabin, WY Multiple midcontinent US project
Completed			
Extensive inventory			Luia Field offshore Brazil

https://www.globalccsinstitute.com/projects/large-scale-ccs-projects

Uthmaniyah Saudi Arabia

Conclusions – needs to incentivize Offshore EOR

- Detailed FEED study on infrastructure
 Move facilities to sea floor
- Additional research on geometry optimization – sweep improvement options
- Reduce risk by support of investment

